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dimerization reaction (eq 6) is uncertain, but bridged 
structures containing one O H - bridge and another con­
taining one O H - and one deprotonated amide nitrogen 
bridge have been proposed6 for the analogous glycyl-
glycine complex, Cu2(H-iGlygly)2(OH)-. Since KT, for 
the formation of these dimers is the same (Table I) for 
all isomers of Leu-Leu, it appears that there is relatively 
little peptide rearrangement during dimer formation 

Since the use of the heuristic pattern recognition tech­
nique called the "learning machine"1 method was 

introduced to chemical data analysis by Isenhour and 
coworkers,2 its feasibility as a general approach to the 
interpretation of masses of experimental data has been 
studied extensively.3-6 Among the structural elucida­
tion techniques which have been examined most in this 
way are mass spectrometry7-9 and infrared spectrom­
etry.10'11 We report here the first application of 
linear discriminant function analysis to natural abun­
dance noise-decoupled 13C nuclear magnetic resonance 
data. Roberts has suggested that the enormous sen­
sitivity of 13C chemical shifts to structural changes 
should make this technique a far more useful tool for 
the investigation of structure than proton nmr.12 Be­
cause of the availability of instrumentation for rela­
tively routine determination of high-resolution natural 
abundance 13C nmr spectra, it seems imperative that 

(1) N. J. Nilsson, "Learning Machines," McGraw-Hill, New York, 
N. Y., 1965. 

(2) P. C. Jurs, B. R. Kowalski, and T. L. Isenhour, Anal. Chem., 41, 
21 (1969). 
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(1972). 
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(1974). 
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(1971). 

(6) L. B. Sybrandtand S. P. Perone, Anal. Chem., 44, 2331 (1972). 
(7) J. B. Justice and T. L. Isenhour, Anal. Chem., 46, 223 (1974). 
(8) P. C. Jurs, Anal. Chem., 43,22 (1971). 
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Anal. Chem., 41,1949 (1969). 
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Anal. Chem., 41,1945 (1969). 
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and also there is probably little contact between the 
two peptide ligands in the dimer. Thus the structure 
with one O H - group bridging the two Cu(H- :L) residues 
via the Cu(II) atoms appears to be the most probable. 
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rapid effective means of interpreting such data be de­
veloped. 

In this paper, an entirely new approach to interpreta­
tion of 13C nmr spectra, proceeding directly from spec­
trum to structural information and circumventing the 
detailed assignment of chemical shifts and coupling 
constants, is outlined. 

Experimental Section 

Data Base. As a data base for the study we have used a recently 
published collection of 13C nmr spectra containing a total of 500 
spectra measured on two different instruments and in eight different 
spectral solvents.13 Chemical shifts were referenced to tetramethyl-
silane and, for the most part, covered a range of 200 ppm. Eighty 
of the spectra were obtained in the continuous-wave mode, the 
remainder were determined using Fourier transform operation. 
Intensities were digitized manually and added to the original 
structure-coded, peak frequency list contained in Johnson and 
Jankowski's collection.13 

Computation Method. Binary pattern classification using a 
simple error correction feedback method5 and various preprocessing 
methods was employed to analyze the coded spectral data. Pro­
grams were written in Fortran IV, using algorithms described below, 
and all computations were carried out using an IBM 360/65 com­
puter. A typical computation including preprocessing, feature 
selection and development of a final weighting vector required 
between 1 and 3 min of central processor time. 

Results and Discussion 

Briefly, the analytical approach is to represent the 13C 
nmr spectra as points in pattern space and then to find 
hyperplanes (linear discriminant functions) which sep­
arate them into binary subsets. Such decision surfaces 
may be developed for any desired binary choice (e.g., 

(13) L. F. Johnson and W. C. Jankowski, "Carbon-13 NMR Spec­
tra," Wiley, New York, N. Y., 1972. The computer-readable spectral 
data were used with permission of the authors and the publisher. 
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separation of spectra into two classes, those of ketones 
and those of nonketones). In order to categorize a 
particular spectrum (pattern) as belonging to one of two 
possible classes, the decision function is applied and 
assignment made based on whether the scalar (S) thus 
obtained has a value less than zero or not. In the pres­
ent research the spectra were each represented by a 
series of 200 data values (corresponding to sums of in­
tensities or transformed intensities) and the dimension 
was augmented by an additional value, arbitrarily se­
lected as 1, to ensure the decision hyperplane would pass 
through the origin of the resulting 201-coordinate 
hyperspace.14 Thus, each spectrum could be viewed as 
a 201-element vector or, equivalently, as a single point 
in 201-dimensional hyperspace. A linear error correc­
tion feedback method was employed, in combination 
with a simple selection algorithm, to develop decision 
planes for a number of structural categorizations.11 

Equations 1-3 summarize the computational approach, 

201 

s = E wt-xt (i) 
i - 1 

W/ =Wi+ cX{ (2) 
/201 

c = -S EX1-X, (3) 

where the Wt are the coefficients of the decision hyper­
plane and the X4 the 201-element vector corresponding 
to a spectrum. The subscripts 1-200 correspond to the 
1-ppm spectral resolution elements used to represent the 
original data. Within each of these intervals, all peak 
intensities were summed to yield the raw data values for 
studies utilizing intensities or, for binary coded data 
(vide infra), were set equal to the number of peaks ap­
pearing in the particular interval. The first resolution 
element (1) contained, in addition, all data from peaks 
appearing at higher field than TMS. The last resolu­
tion element (200) contained information on all spec­
tral peaks appearing with shifts greater than 200 ppm. 
Coding in this manner amounts to approximately a ten­
fold degradation of the quoted spectral resolution in the 
original data. For error correction feedback, modified 
decision hyperplanes (W) are developed using the cor­
rection algorithm stipulated in eq 2 and 3. This cor­
rection feedback is applied for each misclassified spec­
trum in a training set comprised of 400 of the original 
500 spectra in an iterative fashion until either perfect 
convergence classification occurs or a predetermined 
number of feedbacks have taken place.5 

Feature Elimination. For feature elimination (and, 
therefore, dimension reduction) a simple procedure is 
used. First, an arbitrary starting weight vector (W) 
initialized to all ones is applied to each of the 400 
members of the training set, whose correct categories 
are known. This weighting vector is then improved as 
described above. When no further improvement in 
classification occurs, the computation is repeated using 
a starting W initialized to all minus ones. Those fea­
tures (resolution elements) whose final weight vector co­
efficients change sign as a result of the change in initial­
ization conditions are eliminated. The entire process 
is then repeated iteratively until no further feature 
elimination occurs. As a test of the efficacy of the 

(14) L. E. Wangen, N. M. Frew, and T. L. Isenhour, Anal. Chem., 
43,845(1971). 

weight vectors developed at each stage of the process, 
their ability to classify 100 members of the original data 
set (the "unknown" set) which were not included in the 
training set is determined. 

Carbon-13 Nmr Preprocessing. A priori, there are no 
certain guiding principles to dictate a choice of pre­
processing methods for an analysis such as that de­
scribed here. That is not to say, however, that some 
logical choices cannot be made. Consideration of the 
physicochemical basis of the noise-decoupled 13C nmr 
data reveals two essential facts which can serve as guides 
in selection of particular preprocessing approaches. 
First, due to large ratio of 13C nmr shift range to line 
width for typical organic molecules, their noise-decou­
pled 13C spectra tend to contain a single resonance for 
each carbon nucleus. This suggests a simple peak-no 
peak coding scheme might be worthwhile. Second, the 
peak intensity differences are sensitive monitors of the 
difference in carbon environment (due to influences of 
Overhauser effects and differing Ti's). Thus, an in­
tensity-based coding scheme might also prove useful. 
Which is best may depend on the type of structural in­
formation sought and/or the relative importance of the 
two types of information, peak position and peak in­
tensity, in making one class separable from another. 
These factors were empirically assessed in the present 
study. An intermediate approach, wherein intensities 
were coded according to which of five intensity intervals 
they fitted, was also examined. When intensity infor­
mation coded to the nearest 1 % was used, two types of 
normalization were explored. The first was to assign 
the largest peak in each spectrum the value 100 and to 
code the intensities of the remaining peaks relative to 
that base value (i.e., to assign them values between 1 
and 100). A second normalization approach was to 
first code peaks as described above and then to scale the 
resulting values so that each spectrum summed to 100 
(i.e., all spectra are weighted equally). Table I con­
tains the results of all of these approaches for a variety 
of functional group categorization questions. 

Several facts are readily apparent from Table I. 
First, heuristic pattern recognition is successful for this 
particular data base. The technique is most successful 
for those cases where the chemical class is rather pre­
cisely defined. Thus, better results are achieved for the 
specific functions, "aldehydes and ketones," than for the 
less specific "carbonyl," which includes these functions 
as subsets, but also includes acids, esters, amides, etc. 
Clearly, a better weight vector will be found if the 
property is more specific. 

Second, there is no obviously superior preprocessing 
technique. Based on the average per cent correct pre­
diction for a 200 feature data set, the binary and scaled 
normalized intensity techniques give better results for 
two functional group classes each, scaled absolute in­
tensities for one class, and for two classes equally good 
results are found for more than one preprocessing 
technique. When unnecessary features are eliminated, 
the binary and scaled absolute intensity methods give 
the best results, but one technique may yield results 
4-5 % better than another in any given case. When the 
speed of convergence is also considered, the binary 
technique begins to look slightly superior to the other, 
since it converges most rapidly in five of the 200-feature 
sets, and four of the reduced feature cases. However, 
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Table I. Error Correction Feedback Training for Functional Group Identification from 13G Nmr Spectra 

Functional group 

Aldehyde and 
ketone 

Aliphatic 
alcohol 

Carbonyl 
(any C = O ) 

Carboxylic 
acid 

Alkyl bromide 

Alkyl chloride 

Phenyl 

Method 

PNP<* 
AI« 
SAI/ 
NAI» 
SNAP 
PNP 
AI 
SAI 
NAI 
SNAI 
PNP 
AI 
SAI 
NAI 
SNAI 
PNP 
AI 
SAI 
NAI 
SNAI 
PNP 
AI 
SAI 
NAI 
SNAI 
PNP 
AI 
SAI 
NAI 
SNAI 
PNP 
AI 
SAI 
NAI 
SNAI 

No. in" 
total set 

29 

78 

167 

31 

18 

14 

130 

, T^Jn f p n t n r p plimJf»o*ii-»r»&,c 
- i i u i t a t u i ^ t-.li 

No. of feedbacks 

+/-
74/41 

173/112 
101/89 
193/130 
69/51 

393/309 
1725/1417 
566/507 

//1467 
657/660 
265/458 

1217/1647 
791/1034 

1018/1663 
423/621 
162/127 
215/169 
200/191 
191/168 
158/165 
346/101 
395/197 
323/136 
311/137 
270/113 
196/101 
223/115 
178/102 
195/115 
134/98 
465/393 
946/616 
798/623 

1165/847 
613/585 

% correct 
unknown set 

+/-
99/99 
92/93 
93/96 
85/95 

100/100 
88/89 
74/75 
79/83 
74/79 
86/83 
80/77 
72/65 
75/70 
73/71 
74/74 
95/94 
91/95 
95/93 
90/93 
95/94 
92/97 
91/96 
94/96 
94/95 
92/94 
96/100 
96/100 
96/100 
94/100 

100/100 
76/76 
76/78 
75/77 
78/78 
78/78 

Final no. 
retained 

17 
55 
42 
90 
17 

100 
130 
112 
126 
91 
81 

133 
105 
148 
98 
88 

120 
63 
92 
94 
96 

112 
74 

105 
99 
92 

112 
78 

114 
71 
86 

102 
93 

109 
87 

—Fpsitiirp fMiminntion 
JT Cd l Ul C Gil U U l I a I l VJl J 

No. of feedbacks 

+/-
23/19 
65/23 
35/21 

144/123 
31/17 

430/336 

637/626 
198/274 

1001/1296 
535/792 

/ 
275/390 

125/125 

301/193 
217/73 

112/86 
i 
i 

452/434 
1678/669 
1322/530 
1386/1040 

539// 

f 

% correct 
unknown set 

+/-
100/100 
98/98 

100/100 
96/96 

100/99 
88/91 
69/72 
85/85 
79/75 
86/85 
82/79 
70/64 
73/74 
69/70 
75/77 
95/94 
92/89 
96/95 
95/94 
47/97 
89/96 
94/94 
93/92 
96/94 
95/96 
94/96 
94/94 
99/100 
96/97 
95/86 
80/75 
81/81 
81/81 
80/79 
81/78 

" Total set of 500 spectra (see Experimental Section). h Using 400 spectra as the training set and 200 features. The remaining 100 spectra 
comprise the unknown set. c + refers to all ones initial weight vector; — refers to all minus ones initial weight vector. ''Binary; 1 for 
peak, 0 for no peak. "Absolute intensity. > Scaled intensity, maximum = 5; total intensity varies. » Normalized intensity; total = 
100/spectrum. * Scaled intensity, maximum = 5; total intensity normalized to 100/spectrum. * Maximum number of feedbacks was 
reached or not linearly separable. 

it should be noted that this aspect is only of importance 
when weight vectors are being developed. Thereafter, 
it has no effect on the use of the vectors. 

Third, feature elimination yields results equally as 
good as, and usually better than, those achieved using 
the full 200 feature data set. The savings in computa­
tion time are also substantial, provided some method of 
detecting mutually exclusive divergent spectra is in­
cluded (i.e., when the same several spectra are fed back 
repetitively for several iterations). The number of 
features eliminated also depends on the method of pre­
processing. The three methods using the least peak 
height resolution (PN, SAI, SNAI) yield the fewest fea­
tures. 

Fourth, more rapid convergence is obtained when the 
weight vectors are initialized to all — l's. This result 
should be expected, as long as the particular feature 
sought comprises less than 50% of the data base, since a 
completely negative weight vector will cause the binary 
pattern classifier to yield an entire set of "no" results. 
Similarly, a weight vector initialized to all + l ' s should 
converge more rapidly when the sought-for feature 
appears in a majority of the spectra. It is worth noting 
that one way of judging the ability of the method to 
classify unknown compounds is, as Schecter and Jurs 
suggest,16 to compare its predictive ability with the re­

sults obtained by always guessing the more populous 
category. In all but carboxylic acid and alkyl bromide 
cases, our results significantly exceed this figure. Cer­
tainly a larger, more representative data base would be 
expected to improve the situation for the two categories 
where this was not true. 

The present study is compared with pattern recogni­
tion studies on other spectroscopic data in Table II. 

Table II. Comparison of 13C Nmr, Ir, and Mass Spectral ECF 
Training and Feature Selection 

Functional group 
Prediction %/features retained 
Nmr Ir- MS6 

Aldehydes and ketones 100/17 90/79-
Aliphatic alcohols 90/100 96/86 89/65 
Carbonyl 81/81 99/70 73/65 
Phenyl 81/93 90/93 95/65 

"Reference 11. bP. C. Jurs, B. R. Kowalski, T. L. Isenhour, 
and C. N. Reilley, Anal. Chem., 42,1387 (1970). f Ketones only. 

The results obtained from 13C nmr data are comparable, 
both in features retained, and prediction per cent, with 
the other two methods. 

(15) J. Schecter and P. C. Jurs, Appt. Spectrosc, 27, 30 (1973). 
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Conclusions 
We conclude that the present results clearly establish 

the possibility of using heuristic pattern recognition-
based interpretation of 13C nmr data as a structural 
elucidation tool. Our model study, using a set of 
spectra obtained under a rather broad range of experi­
mental conditions, certainly suggests that the use of 13C 
nmr in this way is comparable in speed, reliability, and 
specificity with the earlier infrared and mass spectral 
methods using the same approach. Encouraged as we 
are by the results thus far obtained, studies of the direct 
interpretation of untransformed digitized impulse re­
sponse (free induction decay) data, as suggested by 
Kowalski and Reilly,16 are under way. Furthermore, 
we are also examining the use of Hadamard transform17 

(16) B. R. Kowalski and C. A. Reilly, / . Phys. Chem., 75,1402 (1971). 
(17) B. R. Kowalski and C. F. Bender, Anal. Chem., 45,2234 (1973). 

Because the substituent sites in many seven-membered 
rings rapidly equilibrate by pseudorotation even at 

very low temperatures, relatively few low-temperature 
nmr studies of the conformations and barriers to con­
formational changes have been reported for rings of 
this size.4 In the work described here, we have used 
nmr spectroscopy to study the conformational equilibra­
tion of cycloheptene oxide and its deuterated derivative, 
cycloheptene-i,5,3-G?3 oxide (1). As in cycloheptene, the 
pseudorotation pathway in the chair form of this 
epoxide is precluded by the restriction of the C 7 - Q -

(1) Alfred P. Sloan Research Fellow, 1969-1971. 
(2) University of Southern California. 
(3) University of California—Los Angeles. 
(4) (a) E. S. Glazer, Ph.D. Thesis, California Institute of Technology, 

Pasadena, Calif., 1966; (b) J. D. Roberts, Chem. Brit., 529 (1966); 
(c) R. Knorr, C. Ganter, and J. D. Roberts, Angew. Chem., 79, 577 
(1967); (d) M. St. Jacques and C. Vaziri, Can. J. Chem., 49, 1256 
(1971); (e) K. von Bredow, H. Friebolin, and S. Kabuss, Org. Magn. 
Resonance, 2, 43 (1970), and references therein; (f) K. von Bredow, H. 
Friebolin, and S. Kabuss in "Organic Chemistry; A Series of Mono­
graphs," Vol. 21, G. Chiurdoglu, Ed., Academic Press, New York, 
N. Y., 1971, p 51; (g) E. A. Noe and J. D. Roberts,/. Amer. Chem. Soc, 
93, 7261 (1971); (h) E. Grunwald and E. Price, ibid., 87, 3139 (1965). 

preprocessing of nmr data as an alternate method of 
preliminary data reduction. Spectral simulation via a 
related approach bypassing derivation of chemical shift 
and coupling constant parameters is also being examined. 
It is our belief that the promise of the present and re­
lated studies is that an integrated 13C pattern recogni­
tion-Fourier nmr laboratory computer system is a 
realistic possibility. Thus, we are proceeding with 
plans for implementation of such a system which, ulti­
mately, will provide the possibility of placing the ex­
periment itself in the data interpretation feedback loop. 
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H2C ; D 2 

l 

C2-C3 dihedral angle to a value near 0°, thus removing 
one possible conformational change. 

Results 

The deuterated epoxide, 1, was synthesized from 
cycloheptanone by the route outlined in Scheme I. 
The compound was purified by preparative vpc5 and 
identified by its pmr spectrum and by comparison of its 
vpc retention time with that of unlabeled cycloheptene 
oxide prepared from cycloheptene and w-chloroper-
benzoic acid. This unlabeled cycloheptene oxide was 
also used for the cmr experiments. 

The pmr spectrum at +30° for the proton at C-2 of 1 

(5) A Vs in. X 6 ft glass column of 10% SE-52 on 60-80 Chromosorb 
WAW was used; the column temperature was 80°. 
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